Chapitre 3 : Le déterminant

3.1 Introduction

Définition 30 (matrice des cofacteurs).

Soit n > 1 et $A \in M_{n \times n}(\mathbb{R})$. La matrice $A_{ij} \in M_{(n-1) \times (n-1)}(\mathbb{R})$ obtenue en supprimant la *i*-ème ligne et la *j*-ème colonne de A s'appelle la matrice des cofacteurs de A par rapport à la *i*-ème ligne et *j*-ème colonne.

Exemples

Définition 31 (déterminant).

On appelle déterminant d'ordre n l'application $M_{n\times n}(\mathbb{R}) \to \mathbb{R}$ qui associe à toute matrice $A \in M_{n\times n}(\mathbb{R})$ son déterminant. Ce dernier est défini "par récurrence" de la manière suivante :

- Le déterminant d'ordre 1 d'une matrice $A = (a) \in M_{1\times 1}(\mathbb{R})$ est défini par $\det(A) = a$.
- Supposons que le déterminant d'ordre n-1 ait été défini pour un entier n > 1. Alors le déterminant d'ordre n d'une matrice $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$ est défini par

Remarque det(A) peut aussi s'écrire |A| ou det $(\vec{a_1}, \dots \vec{a_n})$ où les $\vec{a_i}$ sont les colonnes de A.

Exemple pour n=2

Exemple pour n = 3

Calcul pour les matrices 3×3 : la règle de Sarrus

Définition 32 (cofacteur).

Soit $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$. Le cofacteur c_{ij} est le nombre défini par

$$c_{ij} = (-1)^{i+j} |A_{ij}|,$$

où A_{ij} est la matrice des cofacteurs.

Conséquence :

Théorème 24. Le déterminant d'une matrice $A \in M_{n \times n}(\mathbb{R})$ peut être calculé par un développement

1. selon n'importe quelle colonne de A:

$$det(A) = a_{i1}c_{i1} + \dots + a_{in}c_{in}$$

2. selon n'importe quelle ligne de A:

$$det(A) = a_{1j}c_{1j} + \dots + a_{nj}c_{nj}$$

Cas particuliers

1) Matrices diagonales

2) Matrices triangulaires

3.2 Propriétés des déterminants

Le but de cette section est d'obtenir des propriétés permettant de simplifier le calcul du déterminant d'une matrice en passant par la forme échelonnée.

Rappel : Echelonner une matrice A revient à multiplier A à gauche par des matrices élémentaires.

Exemple : Considérons la matrice A donnée par

Théorème 25. Soient $A \in M_{n \times n}(\mathbb{R})$ et E une matrice élémentaire obtenue à partir de I_n . Alors

Théorème 26. Soient $A, B \in M_{n \times n}(\mathbb{R})$ deux matrices. Alors det(AB) = det(A)det(B)

Exemple

Stratégies pour le calcul du déterminant

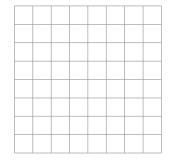
- 1) On développe par rapport à une ligne ou colonne avec beaucoup de zéros.
- 2) On échelonne la matrice.

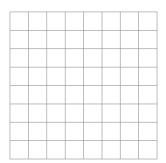
Théorème 27. Soit $A \in M_{n \times n}(\mathbb{R})$. Alors

1.

2.

3.3 Interprétation géométrique du déterminant





Théorème 28.

1.
$$Si \ A \in M_{2\times 2}(\mathbb{R}) \ alors$$

2.
$$Si \ A \in M_{3\times 3}(\mathbb{R}) \ alors$$

Remarque